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RESEARCH IN DENSE PLASMA ATOMIC PHYISCS
I. Introduction

In recent years there has been considerable interest in studying

plasmas at or above solid density because of its importance to radiation

* source development, inertial confinement fusion, and plasma spectrocopy.

i" In addition to these areas of application, there is a more fundamental

issue; that is, the modification of atomic properties and processes caused

by the dense plasma medium. It is the purpose of this investigation to

carry on in the spirit of our earlier investigations and focus attention on

* the solution to the time-independent Schrodinger equation with a self-

consistent charge density.

For calculations of atomic properties the usual approach is to

iteratively solve a set of coupled equations statistically describing the

charge distributions and an effective electron-ion interaction potential.

Incorporating this potential, the bound and free electron distributions are

found from the Schrodinger equation. Thus, given an ion where the bound

orbits are not externally specified, the solution of the equations directly

gives orbital energy eigenvalues and (fractional) populations. The wave

functions and the effective electrostatic potential obtained iff'this manner

" can be used. to find spontaneous decay rates and cross sections for various

atomic processes characterizing radiation, the spectrum of which can be

employed to diagnose the plasma environment.

Herein we describe a method of calculating atomic properties of ions

in a hot, dense plasma environment. Before we examine some results of this

model, the Density Functional Method (DFM), we first examine the accuracy

with which the DFM predicts density distributions and ionic configurations

when the plasma is strongly coupled, i.e., when standard theoretical

techniques can no longer be applied to arrive at a valid description of the

plasma. The hypernetted chain (HNC) approximation for developing plasma

density correlations, however, has been shown to be accurate in this

regime. Thus a comparison of the DFM and HNC models for these dense

plasmas is appropriate.

In Section II we describe the HNC method and a mechanism of developing

an interionic potential from those results. Comparisons are made with the

DFM as well as Debye and nearest neighbor approximations, for strongly

S.• " Manuscript approvd Februw 9, 1984.
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coupled neon. We end the section by concluding that the DFM remains a

valid method even in strongly coupled plasma. Section III describes the

Density Functional technique in some detail. Results of line shifts and

broadening for hydrogenlike argon ions in strongly coupled argon plasmas

are presented. These results include the effects of electron collisions.

II. Comparison Of Atomic Potentials For Strongly Coupled Neon

Thomas-Fermi and Hartree-Fock statistical models have been applied to
1,2

highly ionized atoms in dense plasmas' 2 and subsequently applied to a

strongly coupled neon plasma.3 However, ion correlations were neglected in

these approaches. A self-consistent set of Schrodinger- Poisson equations

including ion correlations was developed by Skupsky4 to study the plasma

microfield effects on a high-Z impurity ion embedded by a dense fully

ionized low-Z plasma. An improvement over this method - the quantum

mechanical treatment of the free electrons - was made by Davis and

Blaha.5  In a similar manner density functional theory (DFT) has been

employed to investigate level shifts and screening effects in the impurity

problem.
6 ,7

The inclusion of ion correlations in these latter models is

accomplished using a Boltzmann distribution under the assumption of nearly-

classical ion interactions. In the case of the one-component plasma

(dynamic ions in a neutralizing background charge), the assumption of a

Boltzmann-like form for the ions would be erroneous for values of the ion

* coupling parameter,

r 2 ( e 2
, , r

greater than about three.8 ,9  Here Z is the effective ionic change, ro is
the ion sphere radius, and 8 - 1/kBT. This discrepancy is not as

significant for a "real" two-species plasma because the mobile electron

fluid is able to provide more effective screening, but has yet to be

investigated in the two-species model for r > 2 and for ions other than

hydrogen. If one can utilize a model that is expected to provide accurate

distributions for a strongly coupled system, one can also use that model to

41
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examine the validity of using self-consistent statistical models in the

strongly coupled regime.

Implicit in all the methods discussed here is the assumption that the

lifetime of the ionic state is long enough so that the plasma has time to

be polarized by the ion. Since the polarization (correlation) time is of

the order of the inverse of the plasma frequency, all of the cases we are

considering can be considered long-lived (a typical state lifetime - the

most rapid destruction mechanism being collisional de-excitation- may be

of the order of 10-14 - 10-15 s; W -1 is about 10-17 s). Each model also

assumes that since the ion state exists through many plasma periods, the

concept of a time-averaged potential for atomic calculations is meaningful.

We investigate here the energy eigenvalues, charge distributions, and

effective electron-ion potentials for strongly coupled neon plasmas using a

self-consistent DFT model similar to that described in Ref. 7. These

results are compared with those obtained from the solution of the two-

component plasma hypernetted chain (HNC) equations, which are assumed to be

valid at these densities and temperatures. The results will indicate the

inadequacy of the Debye-Huckel (DH) and ion-sphere (IS) calculations when

13 < r < 1

Models

We consider an ion of nuclear charge Z in a plasma in which the

average effective charge is Z. Z is equal to Z minus the mean number of

bound electrons per ion and is a result of the model. Density functional

theory leads to a system of equations that must be solved self-

consistently. The electrostatic potential is given by the Poisson

equation,

V(r) - Z 2 ford e r (2)
* + ]odr r 2~~

r-' dr r (pe+b+pi)

#Vs



The plasma is assumed to be in thermal equilibrium and all electrical

'4 charge distributions are assumed to be spherically symmetric. In Eq.

(1), .b is the local density of bound electrons found from solving

* the Schrodinger equation where the interaction potential is V(r) from Eq.

(1) with Pb set equal to zero.

e is the local charge density of free electrons. It is represented

* by a Fermi-Dirac energy distribution beyond a spherical boundary large

enough so that the plasma at the boundary may be considered neutral.

Inside this sphere the free electrons may be treated quantum-mechanically

and are described by wave functions that are solutions of the time-

independent Schrodinger equation. The ion charge density is assumed to

take the Boltzmann form

n -V(r)(2e e ( 2 )

At r - , pi - -M e' insuring neutrality; we also have appropriate

boundary conditions. The equation are solved self-consistently with these

.boundary conditions to yield pe, Pil- V(r), and the energy eigenvalues.

In order to gauge the reliability of the above model in a strongly

coupled plasma we turn to a semiclassical treatment of particle

correlations that has been found to accurately reproduce molecular-dynamics

calculations in this regime. In this approach - the two-component plasma
(TCP) - the ions and electrons are treated as classical particles that

interact through effective two-body potentials which deviate from pure

Coulomb behavior at short distances such that the essential quantum

. diffraction effects are simulated. A particular form has been suggested by

Deutsch I0 and used in the computer simulations11 . This form uses the

reduced mass de Broglie wavelength, A where a and q are species labels,

as a quantum mechanical cutoff parameter, i.e.

2

S (r )a r [1 - exp (-r/h )J; (3)

C is the charge, of species a and -M h/(2wug k T)11 2 where is the

reduced mass. This potential is finite at the origin and is expected to

Si give reasonable results for nondegenerate plasmas so long as X /r << 1
ee o

4
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( Xe is the smallest of the three X .) This condition is equivalent
-2 1/2

to r << 9 (Z) /(T eV)

In order to include the plasma many-body effects, the binary inter-

actions defined in Eq. (3) are used in the hypernetted chain (HNC)

equations. 12  This is an approximate integral equation method for

calculating static correlation functions for systems of particles with long

range potentials and has proven to be accurate for strongly coupled

hydrogen plasmas.1 1  The quantities of interest are the radial distribution

functions (rdf's), ga0(r), which contain the static structural information

in the TCP. The HNC approximation for the rdf's is

gas(r) - exp [-OV a(r) + h as (r)-ca(r)], (4)

where the total correlations

h (r) - g (r)-l (5)

are related to the direct correlations c 8 by the Ornstein-Zernicke

equations

h() ( MY + h(k). (6)

Here the Fourier transform is defined as

h (k) - 4wn Jo dr r2 sinkr hs (r). (7)

Eqs. (4-7) are solved iteratively for a,$ - i,e. The rdf's generated

by this procedure reduce to their Debye-Huckel (DH) forms in the limit of
.,.4 weak coupling (r << 1), but are considerably different from the DH

approximation when r is order one or larger.

The TCP is a model system of point charges, ions with charge + Z and

free electrons with charge -1. Formally the HNC scheme requires the exact

Y as an input parameter; this is necessary if the ionic and electronic

distribuiton functions are to be examined. In order to find the effective

potential, however, only a rough guess of Z will suffice to determine much

of the V(r) curve.

5
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The effective electron-ion potential and the screening function,

e (k), are defined via Poisson's equation, the Fourier transform of which
V>' is given by

4 e2Z 4we 2Z (8)
V(k) - Is-- ( ~-f 1 k) - S~ (k)//' Y 8
HNC k E(k) ke

The static structure factors are defined by

S (k) - 6 + ( a )1/2 h (k) (9)

as a$ has)

Close to a test point ion of charge Z the free electron distribution

.e determines V(r) ;the ion-ion rdf is negligible out to a distance of about
HNC

one-half ro . In this region Poisson's equation is

V2V'(r) - 4we 2  [S(r) - -e hie(r)], r K ro/2, (10)
HNC

where the prime on V(r) indicates the test ion has charge Z, not Z. For a
HNC

given temperature and electron density, a higher value of Z simply pulls

the electron distribution, hie(r), in tighter, an effect that essentially

compensates the Z prefactor to hie. The result is that the function in

brackets in Eq. (10) is very nearly insensitive to the mean ionic charge,

i.e.

V'(r) - 4we 2 y f(r) (11)
HNC

where f(r) is a function nearly independent of Z. This is the rationale

behind the form of the potential in Eq. (8); V (r) is a screening
HNC

function dependent on density and temperature scaled by the nuclear charge

Z. We find that this form very nearly reproduces the potentials found in

the quantum-mechanical self-consistent model described earlier.

If the particle distributions are required (an accurate value of Z is

p needed to obtain the actual distributions) two steps are necessary. First,
a guess of Z is made and the HNC equations solved for Sii(k) and S ie(k).

6
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A "guess" of the potential is then found from Eq. (8). This potential can

then be used in the Schrodinger equation to find wave functions for all

bound states. The integrated wave functions provide a new Y, in which,

when used in the HNC code a second time, provide a new potential and the
-*. needed distributions. Generally only the one such iteration is required.

The definition1 3 of V(r) in Eq. (8) implies a form of the dielectric

function significantly different from that obtained using the fluctuation-

dissipation theorm1 4 (FDT), although both forms reduce to DH forms in the

proper limits. For dense plasmas VHNC from Eq. (8) agrees much more

closely with results from the ion sphere model (described below) and with

Thomas-Fermi3 calculations, as well as the potential of mean force"apprximaion VMF(r) Ze2

approximation, V (r) - -- n [ge(r)], than an effective interaction

derived from the FDT. In fact VFDT(r) shows screening that everywhere has

a larger magnitude than VDH(r). The Debye potential itself is known

already to predict excessive screening in plasmas where the validity of the

DH approximation is questionable. A plasma in a near metallic state (where

the ion sphere model might be used) shows a form very similar to the

potential defined via Poisson's equation, which is qualitatively and

quantitatively distinct from an effective interaction derived from the FDT.

As the plasma approaches the limit of a solid structure, the

ion-sphere (IS) approximation becomes more valid. The ion-sphere model4 '15

- assumes complete ion shielding within an ion-sphere radius by a uniform

cloud of electrons. Poisson's equation in this case yields

2
.Ze 2  1 I--. V V(r) = 2 (3 r (12)

0 r
0

Results

We consider a strongly coupled neon gas plasma. Table I summarizes

5 the conditions under which the runs were made, the value of Z being a

result of the self-consistent density functional (DF) model. All cases

have r 's in excess of two. We note that both the HNC and DF models

7a .:.a:-..~aA-Mt-xr.sarma-~'



Table I

Summary of selected neon plasma conditions described by the models.

is the mean charge per ion. r is the ion coupling parameter.

Electron Density Temperature r

(cm- 3 ) (eV)

1024 400 8.77 2.2

2.1024 250 7.61 3.4

5.1024 250 7.85 4.9

5.1025 210 8.02 13.1

4.8

= -. .-:-.,.'.' ..-%- . ,. ,.,- .-.. , , '.,,-.,' -" ,,., '. ,-, ', ' ., ',-,-,,' ,,." .' -,,',', .. .• . ..• •.-8-



a-u

reduce to correct Debye-Huckel results in the limit of weak coupling

(r << 1 )

The ion charge density from the self-consistent model normalized to

the backround density, pi /p(c), is equivalent to the ion-ion radial distri-

-.-'. bution function, gii" Fig. I displays the ion distributions resulting from

DF solutions for the r - 2.2 and r = 4.9 cases. These figures are compared

with from the HNC approximation using the effective binary interaction

in Eq. (3) and with the Debye form

-r/X

DH -2 Dgr) = exp [ -Ze e ] , (13)
r

where

X.2 . 4nn e2 (Z+l)• (14)
H e

g DHshows the tendency of the DH approximation to excessively screen

the ions in dense plasma, an effect previously seen in the OCP8 '16 and the

TCPII. The HNC rdf is assumed to be the most accurate of the three

representations, because, since Xii/r = 10-5  the ions are essentially

classical particles and the computer simulations have supported the use of

the HNC approximation for classical systems. In spite of the fact that i

in the DF method - Eq. (3) - cannot reproduce the oscillations around gi -

1.0 for 2 < r/a < 4 in the larger r case, the agreement between DFM and

'NC even at r - 4.9 is very good. The small difference between these two

forms is not expected to alter the effective potentiall7; we will test the

significance of the difference below.

Fig. 2 compares the electron density profile (including both bound and

free electrons) provided by the self-consistent method around an ion with

the ion-electron radial distribution function produced by the HNC code for

r - 2.2. The profiles are very close for r/a° > 0.25. The innermost r-

point calculated on the Fourier transform mesh in the HNC code is

r/a° - 0.125. This also corresponds to the innermost r-mesh point of the
potential, since rV(r)/r-O = Z, interpolation between r = 0 and the first

14 mesh point is possible for VHNC(r). Extrapolation of the HNC gie to

A smaller radii, however, would not be meaningful, since A /ao 0.12;
thus quantum mechanical details are important in this region. Forrest

Rogers has investigated this subject for hydrogen and few-times ionized

9
..
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13

argon. Since our goal is a many-body effective potential with which to

examine average atom calculations, we find that the present model is

adequate.

The DF effective potential is a consequence of the solution of the

model. This function in the form rV(r) appears in Fig. 3 for r - 2.2 and

r r - 4.9. The HNC/Poisson potential - Eq. (9) - is also presented. The two

forms are seen to be very similar in both cases indicating the apparent

validity of the quantum mechanical model even at very high densities. The

Debye potential reveals much stronger screening except for large distances

- where rV(r) tends to zero for all models. 18  The ion-sphere approximation

- is included for comparison: It agrees rather well with DFM and HNC/Poisson

at short distances, but predicts even larger than Debye screening farther

as r becomes larger - a tendency very much distinct from DFM and HNC. The

overall form of the IS function is very different from the exponential

* behavior of the DH, DFM, and HNC/Poisson functions, a result of its

constraint of fixed ionic volume.

Having now seen that the self-consistent formalism can provide

reasonable results (compared with the HNC data) for these strongly coupled

plasmas, we now look at the energy levels of the neon ions. Table II is a

compilation of negative energy eigenvalues arising from the solution of the

Schrodinger equation within the method. All negative (bound) energies are

noted. The less deeply bound or absent DH values (resulting from more

severe screening) as well as eigenvalues found by using VIs(r) and VHNC(r)

are presented for comparison.

As a test of the significance of the difference between the two forms

of the ion distribution functions - the DFM [ Eq. (2) ] and HNC [ Eq. (4) ]RNC
a run of the DF model was repeated for r - 3.4 using gHN as a fixed

function instead of Eq. (2). Those figures are set in parentheses in Table

II. The difference is indeed minor and of the order of the numerical

accuracy of the coded formalism.

As an example of a neon plasma at extreme conditions, we examined the
5025c-

case in which ne = 5.102cm and T - 210 eV, giving a r of 13.1. In this

* regime one expects to see considerable difference between the profiles

produced by the DF and HNC methods. In Fig. 4 the ion distributions of the

HNC, DF, and DH theories are reproduced. The HNC rdf shows that in this

.I'

10
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TABLE II

Energy eigenvalues in atomic units of neon plasmas at r - 2.2, 3.4,4*9 HNC SnplC o
4.9, and 13.1 from self-consistent model (using H in place of

ii i
for the parenthetical values under r -3.4), and the HNC/Poisson model,

Debye model, and ion-sphere model potentials. All bound level

N. energies are given.

r -2.2 r -3.4

DF .NC is DR D HNC is DR

1S -42.3 -43.1 -43.8 -39.7 -34.6 (-34.6) -39.4 -41.8 -33.7

Ire.. 2S -6.15 -6.35 -6.45 -4.40 -2.88(-2.89) -3.77 -4.65 -1.54

2p -5.93 -6.24 -6.40 -4.00 -2.31(-2.41) -3.41 -4.55 -0.77

3a -0.64 -0.57 -0.23 -0.16

3p -0.50 -0.44 -0.12 -0.01

3d -0.22 -0.18

r - 4.9 r -13.1

DF HNC IS DR DF RNC IS DR

,S....

Is -31.4 -34.1 -39.0 -25.8 -20.0 -21.5 -27.1 -0.66

2S -1.30 -1.14 -2.40
,-...

S.C.. 2p -2.13 _ _______

a,.

,'.................

% '.
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case ion correlations are not Boltzmann-like. The non-negligible

oscillation about gji - 1 shows that there is now a strong indication of

" . ion ordering. Since the DF method utilizes Eq. (2), this effect is not

seen in those results. Quantitatively the DFM and HNC rdf's are more

dissimilar than the less coupled cases, although the DH curve is

considerably more distinct from both of these.

Fig. 4 indicates that the effects of non-Boltzmann ion correlations

are expected to be seen in the potential only at distances of r/ao greater

than one. Inside this radius the DFM and HNC ion distributions are similar

enough that the potential, which here depends on the electron distribution,

is not expected to be greatly affected. The Debye potential is expected to

be overly screened again. Fig. 5 provides the calculated potentials for

f - 13.1. The ordering seen in Fig. 4 is obviously manifested as the r-

space oscillations in V(r). For purposes of atomic calculations, this

effect will have little significance as the spatial extent of the ls wave

function is limited to the volume inside r/a - 0.15. For comparison we0

have plotted the ion sphere potential (crosses), which is seen to coincide
closely with the DF and HNC effective potentials up to r/a - 0.5.

o0
Our primary goal in this section is to investigate the applicability

of the Density Functional Method to strongly coupled plasmas. As points of

comparison we include potential calculations from Debye-Huckel (DH-correct

for r << 1) and ion-sphere (IS-assumed correct for r >> 1)
A approximations. The solution to the hypernetted chain (HNC) equations

incorporating a semiclassical binary pseudopotential, 0 which has been

found to be accurate in strongly coupled hydrogen plasmas,11 is the plasma

model whose statistical properties the DFM must mirror in order to be

considered valid in this regime.

The DF method incorporates ion correlations via a Boltzmann factor
with the self-consistent potential in the exponent. Although this form is

approximate and cannot predict strong correlations which result in spatial

oscillations in gii, the DF ion distribution is very close to the HNC

profile for all cases considered with the exception of r - 13. The DH

profiles predict more closely packed ions due to considerably more

screening, a charateristic of DH theory outside of its range of validity

.1 and known to be incorrect.8'11

12! '°,



The IS profile (not depicted on Figs. 1 and 4) is a step function at r

* . ro with amplitude zero inside this radius and amplitude one beyond r0 .

*This extreme form is not appropriate for the lower r cases, but is nearly

y correct for r - 13 (r0=O. 64a0 ). Of course the structural oscillations are
absent in the IS model but this should not be very important for

calculations involving bound electrons.
The inner region of the effective potential is determined mainly by

the electron distribution around the ion. The HNC and DFM electron

distributions are seen in Fig. 2 to be close except very near the ion where
the HNC solutions cannot be found. The ion sphere profile here possesses
no structure, simply a horizontal line at gie - 1; this difference is
crucial when developing the effective potential that is used to investigate

the atomic structure of the ion.

The effective potential is a consequence of the solution of the DF

method. The HNC interaction is derived from a screening function that is

nearly independent of the average effective charge, Z (for a given
q 5 V.temperature and density), scaled to the nuclear charge of the ions. The

derivation of VHNC(r) is from Poisson's equation, not the fluctuation

* dissipation theorm as explained in the last section.

-. 5 The DF potential is found to be very similar to VHNC(r) for the lower

*r cases. The HNC potential is less screened than the DF potential in the

region r < r 0/2, where the electron distribution essentially determines the

form of the potential. The electron "pile-up" near the nucleus is larger

in the DF model, more effectively screening the positive charge. The DF

electron distribution and thus the effective potential in this region are

probably more accurate than the HNC results. For larger r, however, the

* ion distribution begins to effect the potential. The ion-ion rdf curves in

Figs. 1 and 4 show the ions generally less packed in the HNC approximation

than in the DF method, evidence of the greater "pile-up", but the structure
41 is not simple. The enhanced (non-Boltzmann-like) ion correlations shorten

te range of the calculated potential. The HNC potential in this region is

probably the more accurate of the two.

% Fig. 5 indicates the presence of very strong enhanced correlations

effetingthe potential. Using the HNC ion distributions in the DF method

in place of the Boltzmann from does not allow gjj(r) to readjust to changes

13
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in the electron distribution in each iteration (unless the HNC code is

coupled directly to the DF scheme, a procedure we have not undertaken).

Only in the r - 13 case might this be important. A potential constructed

of the effective potential from the DF theory inside r m r 0/2 andVHN(r

outside this point should suffice for most atomic calculations. For bound

state energies at r' - 13, the differences between HNC an DF are not

important (see Table II). Calculations of continuum properties may be

effected. This problem will be investigated in the future.

The inner region is more important for obtaining information on bound

states. Here, the ion sphere approximation is hampered by the assumption

of uniform electron density with the result the VIS(r) predicts more deeply

bound states than HNC or DFM (which are in turn more deeply bound than the

inappropriate DH values). This is true even at the extreme case of r
13.1 as indicated by Table II. At the temperatures and densities for the

cases listed, the HNC and DF potentials predict the same number of bound

states with approximately the same energies. The IS approximation predicts

more deeply bound inner levels but may result in less energetically bound

outer levels (as in r - 2.2) if the wave functions extend into the region

where the range of the IS potential is foreshortened by its definition of a

fixed ionic volume. The Debye values all indicate more shallow states,

because of large screening. (If in the definition of XD in Eq. (14), Z
p. D

were used instead of Z, the result would be even more severe screening.

Setting Z-0 in Eq. (14) i.e., using the electron Debye length, produces a

potential devoid of any ionic contributions to the correlation functions.

The result here is a potential that lies much above all of the curves; this

approximation provides too little screening.)

Since the HNC/Poisson potential appears to be accurate for atomic

calculations in neon for r < 2.2 (by Fig. 3 and Table II), this

approximation, which is very easy to generate, can be used to examine other

properties of such strongly coupled systems requiring a many-body

potential. For calculations at higher coupling and details of electron

distributions very close to the nucleus, the self-consistent method is

needed.

14
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We have shown the self-consistent model produces reliable results for

strongly coupled plasmas compared to hypernetted chain results in neon up

to r of order five and higher if HNC ion distributions are employed. In

addition, we have shown that the HNC method of generating correlation

functions provides an effective potential that can be used in calculations

of atomic properties up to r of order two (for neon). Debye-Huckel theory

is not a meaningful approximation in strongly coupled plasmas. Nor can we

recommend the use of the ion sphere potential for any of the cases examined

here.

III. Line Broadening and Ionization in Dense Argon Plasmas

In this particular section considerations are made to obtain the

9.....binding energy of the electron in a given eigenstate via the Density

Functional Method. In effect we consider the difference of total energies

for the two specific configurations - one with the electron bound to the

ion, adthe other where iti onieancotbus to the free Llectron
plasma. As will be seen from the results, the binding energies calculated

this way are significantly different from the usual procedure of generating

eigenvalues in an effective potential.

The Density Functional Method (DFM)

In the present investigation we have studied energy levels, lowering

of ionization potential, collision cross sections, and electron collision

' ~ line broadening of hydrogen-like argon in pure argon plasma at T - 1000 eV

and electron densities of 5 x 1024 and 2 x 1025 cm-3 .

Basic assumptions of our procedure are the spherical symmetry of

electron and ion distribution around the central ion, continuous

distribution of all charges around the given nucleus, and the time-

independent character of wave functions describing both the bound and the
free electrons.

The electron wave functions satisfy the equation (in atomic units

which are used unless specified otherwise)

15
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{ :1 7 2_Z xc ( xc e
1 2 Z-(rf d' + V [ne(r)]-V c[ne(c)]},4( )=el( ) (15)

Ir-ri
N.'4

where Z is the nuclear charge, p is the local charge density, ne is the

local electron density (including the bound and free electrons), and Vxc is

.-. the exchange-correlation contribution to the chemical potential of a

uniform electron gas of density ne. The wave function of the bound
electron in the nX orbit is normalized to unity, while the continuum wave

functions are normalized so that at large r,

,. ." (r) + exp [A-. ] (16)

with k 2c.

The local electron density ne is calculated from the spherical average
a 2 

e

Sof I t nX and I *k I

ne(r) - Jnil 2av + 0 W(k) 1 k12 a, dk, (17)

where w2k-2W(k) is the Fermi distribution function and

fW(k)dk - n () N . (18)
K.

Therefore n e(r) + Ne  at large distance from the central ion. The

expression for Vxc was taken from Dharma-Wardana and Taylor 19 (see also

Ref. 5). It is assumed that the ion distribution follows the Boltzmann

statistics and that

n i(r) - ni(o)exp[-V(r)Z/kBT] . (19)

kB is the Boltzmann constant, T the temperature, Z is the effective charge

* of ions surrounding a given hydrogen-like ion, and

Z p(r')
V(r) - + f - dr . (20)

Irrr

Finally, the local charge density p in (15) and (20) is given in terms of

the electron and ion charge density pe and pi, respectively, by

16
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= e i+ i  (21)

with

=-n P0 Zn
e  e i i

In a neutral plasma, ne(a) Zn(c)

The present method differs from the procedure used in Ref. 5 in one

important point. Here the electric charge density 0 in Eq. (15) is

calculated from all charges and both the bound and free electrons move in

the same potential. In Ref. 5 the self-interaction of the bound electron

was not included in the equation for n and Vxc was calculated only from

the density of free electrons. In the limit of very low densities Ne, our

present method leads to incorrect asymptotic behavior of the potential

terms in (15), because the exchange-correlation term does not fully

compensate the self-energy contribution to (20). This difficulty is well

known from the Hartree-Fock-Slater approximation for many-electron atoms20,

but it is of negligible importance for high-density plasmas.

The Eq. (15) has been solved self-consistently by an iterative

procedure. Due to the high temperature and high nuclear charge Z, the

expansion of *k into partial waves requires inclusion of a large number of

terms. To speed up the calculation and to reduce the number of

contributing partial waves, we approximated the free electron density in

the outer region by the expression

ne = /2 w-2 fm a c ( exp[(-V'--u)/kBT ] + 1}-1 de (22)
V-/kT

with

V'(r) - V(r) - V xc[n e(r)] + V xc [n e(-)] (23)

U is the chemical potential determined by the condition that n eN fore e
r+.. The distance ro, beyond which the electron density derived from the

solution of (15) was replaced by (22), was chosen in such a way that at r

the densities ne obtained by both methods were in agreement. This

condition does not uniquely determine ro, however, because the electron

density profile resulting from the solution of (15) exhibits oscillations

with decreasing amplitude as r increases, while (22) is a smooth function

17
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of r and it intersects the correct density profile in many points. In the

%. outer region, (22) represents a good approximation to a smoothed profile of

ne and it was verified that atomic parameters derived from such density

profile were in agreement with a full-scale calculation. The reliability

of (22) in the outer region is demonstrated in Fig. 6 which shows a

comparison of electron density profiles from the solution of Eq. (15) and

from formula (22). In this particular case, ro a 0.555 in the last

iteration, and the electron density for r > r0  (dashed curve) was obtained

from (15) using a self-consistent potential of the last iteration.

The described procedure requires a knowledge of the effective charge

Z appearing in the ion distribution (19). We have determined Z from the

average atom model (AAM) using the density-functional theory for pure argon

plasma at a given temperature and electron density. Many variations of the

AAM have been described in the literature. They fall roughly into two

categories depending on whether the AAM has or has not a definite

boundary. In our method, the average atom is not spatially limited, and

the computational scheme for the solution of the AAM is the same as for the

hydrogen-like ion except for Eq. (17), where the term Ir.I
2  should be, at av

replaced by

jJ b n bf*nXIav

bnZ are the occupation numbers of individual nX levels obtained from the

relation

b ni 2(2t+l){expf(c n -11) /k BT]+11-. (24)

*" Z is then given by

Z ,Z- b . (25)
nX nX.

Similarly to the case of a hydrogenic ion, Eqs. (15), (17), (19) and

(21) should be solved self-consistently and Eqs. (24) and (25) have to be

satisfied. Results for two plasma conditions investigated in the present

paper are given in Table III.

18
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Table III

Characteristics of pure argon plasma conditions studied in this paper.

Temperature (eV) 1000 1000

Electron density (cm - 3 ) 5 x 1024 2 x 102 5

' Effective ion charge Z 16.08 15.46

Coupling constant 4.07 6.04

- Debye length D(ao) 0.480 0.245

Ion sphere radius Ri(ao) 1.730 1.076

V19
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The validity of Boltzmann statistics for ion distribution (19) in a

plasma with the ion-coupling parameter r > 1 may be questionable, but a

comparison with the hypernetted chain approximation (Fig. 7) indicates that

even at this r the Boltzmann distribution is still an acceptable

approximation.

Results and Discussion

For plasma conditions considered in this paper, the Debye length is

much smaller than the ion sphere radius (Table III) and consequently one

can expect that the Debye-Huckel theory would be inadequate for the

description of plasma properties. This is demonstrated by comparison of

potentials in Fig. 8. The DH potential is substantially lower than the

self-consistent potentials for either the AAM or the hydrogen-like ions,

and the one-electron eigenvalues enZ are correspondingly higher. Table IV

shows a comparison of eigenvalues ent for the bound electron in the AAM,

in the linearized DH potential, in the hydrogen-like argon ion from the

solution of Eq. (15), and for an isolated H-like ion. The occupation

numbers b for levels in the AAM are also shown. The highest bound

levels in the AAM and in the H-like ions are 3d and 2p for electron
densities 5x1024 and 2xlO 25 cm-3 , respectively, but only 3s and 2s in the

DH potential.

In considering the energy differences between various excited levels

of the ion, one has to add to the energy of the bound electron the energy

of the surrounding plasma which also depends on the. level n . Let R' be

the distance from the nucleus of a given hydrogenic ion such that for r>R-,

ne(r) - Ne, ni(r) - Ne/Z, and V(r) - 0. Assuming that the ions obey

Boltzmann statistics, the total energy Ent of an ion in the rd state and

the plasma inside a sphere with the radius R' is

4 Et Cn + Nel kW(k)Ii: 12  dkd " + f . . id1

+ r I ') drdr (26)
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+ fn {V cn(-)] - V [n (r)] + f [n (r)]1 d + k T fnid+r + TS.
ec e ec -ekBT en2dr

fxc is the exchange and correlation energy per electron of a uniform

electron gas of density ne and it is related to Vxc by

.-V = d [nef (ne)J/dn •

S is the entropy of the system inside R'. In evaluating (26) for different

nX, R' should be such that the total number of particles inside R' remains

the same. Terms involving f ne d' and f ni dr then cancel out in energy

differences. We also omit small contributions arising from differences of

the terms fne(fxc - Vxc) dr + TS in (26).

The total energy E of a fully ionized atom can be obtained by the

same procedure, if the term ln 2  in Eq. (17) is omitted altogether. The
n2X avcharge density distribution in this case differs from the distribution for

a hydrogenic ion. The negative ionization energy of the nX H-like level is

then equal to

I E E + k T, (27)

where the last term represents the energy necessary for the thermalization

of the ejected electron. The values of I n are shown in Table IV.

In Table V, we compare the lowering AI of ionization potential for

individual nt levels derived from Eq. (27), from eigenvalues of the H-like

ion in the Debye-Huckel potential, from the Stewart-Pyatt formula21 , from

the temperature independent, uniform electron density ion sphere model
3(AI - - 7 (Z-l)/Ri, Ri - ion sphere radius), and from the DH formula

AI = - Z/D. The value D of the Debye screening length was taken from Table

III. Ri corresponds to the hydrogenic ion with a charge Z-1 - 17.0, and is

therefore slightly larger than values in Table III. The agreement between

our present results and the Stewart-Pyatt formula or the ion sphere model

is very good which can be understood by comparing the density profiles in

Figs. 6 and 7. Substantial deviations from a uniform electron density take

place only in the inner region of the ion sphere, and the ion density

profile is steep at the ion sphere boundary.
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Table V

Lowering of ionization potential for H-like argon at 1000 eV.
1 24 

10 25 -

=5 10 cm N = 2 x 10 cm 3
e e

*".4". Present result From e Present result From nk

Level (Eq.(13) and in DH (Eq. (13) and in DH

Table 1) potential Table 1) potential

ls -13.8 -34.4 -21.4 -62.5

2s -12.1 -26.9 -19.2 -38.3

2p -12.2 -28.3 -19.5

3s -11.4 -17.6

3p -11.5

3d -11.7

Stewart-Pyatt - 13.6 - 22.0

Ion sphere model - 14.5 - 23.0

DH theory - 37.5 - 73.5

%* 

Lowering A I (at. units) of ionization potential for hydrogen-like

argon. Pure argon plasma, T 1000 eV.
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The frequency shifts of the Lyman a and Lyman a lines obtained from

values I n in Table IV are -43.5 eV and -62.6 eV, respectively, for the

electron density 5 x 1024 cm 3 , and the Lyman a shift for Ne - 2 x 1025

cm 3 is -51.7 eV. However, these shifts do not necessarily correspond to

actual observable line shifts as mentioned in the conclusion. It is worth

noting that shifts obtained in the present paper are much larger than

shifts of an argon ion in a pure hydrogen plasma4 '5, but they are smaller

than shifts derived from the eigenvalues e only.

The optical transition probability coefficients t. calculated from the

standard formula using energy differences from Table IV and self-consistent

bound wave functions are changed by plasma effects only slightly as

indicated in Table VI.

The shift of spectral lines due to the plasma environment is

accompanied by the line broadening. There are several mechanisms that

participate in this process and we have restricted our investigation to the

electron collison broadening effects. Assuming that the impact

approximation is valid and that one can separate collision broadening

effects from other mechanisms, the full width at half-maximum (FWHM) of a

spectral line is given by

(in) +(in) +N{v f f () fo (a)I2dn}a, (28)
FWHM q (upper) q(lower) + upper lower av

(in) an (in)
where q (in) and q (in) are the total inelastic collision rates for

(upper) (lower)
the upper and lower level, respectively, v is the electron velocity, f(Q)

is the elastic scattering amplitude, and averge is taken over the electron

velocity distribution. For the lines of the Lyman series the contribution

to the width from the scattering on the lower level can be neglected and

the FWHM is then simply equal to the sum of all (elastic and inelastic)
collision rates for the scattering on the upper level. In our procedure,

collision cross sections and rates were calculated in a distorted-wave

approximation described in Ref. 5. The hypernetted-chain calculations for

these plasma conditions indicate that the mutual interaction between the

bound and the free electron is not affected by screening. We have used

therefore the full Coulomb interaction of the two electrons in the

evaluation of collision cross sections. The cross sections for the 2p-2s

transition exhibit resonances in the low-energy region (Fig. 9) caused by

24
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*.\. Table VI

Ratio A/Ae of transition probability coefficients

for hydrogen-like argon.

Pure argon plasma, T - 1000 eV.
. .%

Transition Ne -5 x 1024 cm- 3  Ne 2 x 1025 cm- 3

2p-ls 0.994 0.969

4.3p-ls 0.835

3p-2s 0.995

3s-2p 1.140

3d-2p 0.936

0 %

. %

.5. °

d.

N.-.2
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~. "the enhancement of the low partial waves. A similar behavior has been

found previously 5  for hydrogenic neon and argon at different plasma

conditions. The resonance appears to be caused by a temporary trapping of

the colliding electron in a quasi-bound orbit just above the ionization

limit.

Electron collision rates contributing to the perturbation of the 2p

level are summarized in Table VII together with the FWHM of the Lyman a

lines. It is to be noted that the 2p-2s collision rate represents a

dominant contribution to the sum of inelastic collision rates and that its

magnitude is due mainly to the small difference of the two levels as

apparent from the Int values in Table IV. Thus correct differences of

energy levels are essential for the calculation of line widths. As
mentioned before, energy differences derived from the values I in Table

IV may not be directly observable and therefore suitable for the
calculation of inelastic collision cross sections. A complete theory

should include several other effects and also a time-dependent character of

* all processes involved in the emission of radiation. Therefore the derived

value of the Lyman a width should be regarded only as an approximation.

The frequency of electron collisions with the H-like argon is at least

two orders of magnitude larger than the spontaneous transition probability

for the Lyman a line (A - 6.5 x 1013 sec- 1 ). Our assumption, which is

implicit to the present treatment of hydrogen-like ions, that the

distribution of free electrons will adjust to the various atomic orbitals

nt, is therefore a reasonabale first approximation.

.. .. The frequency of plasma fluctuations is expected to be approximately

equal to the plasma frequency, which, in our case, is equal to 2 x 1016 and

4 x 1016 sec- 1, respectively. Since the average lifetime due to collisions

of the low excited state is of the same order of magnitude as the

-.-, individual plasma fluctuations, the use of a time-averaged potential and a

time-independent electron wave functions is not rigorously correct. For

the time being it is an implicit assumption in our formalism that remains

to be confirmed.

To conclude, there are a number of issues not directly addressed here

but have bearing on the problem. It has been our intent to describe the

974 effects of the plasma environment on the so-called isolated atom

eigenfunctions and eigenvalues. In a steady-state situation we have
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Table VII

Electron collision rates (sec - I) for scattering on the

2p level of a hydrogen-like argon. Pure argon plasma, T - 1000 eV.

Inelastic collisions Ne - 5 x 1024 cm-3  Ne - 2 x 1025 cm-3

2p-ls 2.39 x 1013 9.26 x 1013

2p-2s 2.58 x 1015 1.78 x 1016

- : Z p-3s 2.84 x 1013

2p-3p 3.25 x 102 4

2p-3d 5.35 x 1014

All inelastic collisions 3.49 x 101 5  1.79 x 1016

All elastic collisions 1.95 x 1015 8.69 x 1015

Total collision rate 5.44 x 10 2.66 x I 16

L collision width (FWHM) 22.5 eV 110.0 eV

'7
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accomplished this. A new basis set has been derived from which a number of

atomic parameters can be obtained. In addition, through the proper choice

of a time-development operator it should be possible to describe the time

evolution of these parameters as well as calculate some of the more

relevant physical observables, such as line shifts. The evaluation of

these quantities is presently under investigation and will be reported on

later. However, this should in no way detract from what has been

accomplished here. In fact, for a variety of cases and conditions it may

very well be that 2nd order terms calculated in our new basis set are

negligible.
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Fig. 1. Ion-ion radial distribution functions for (a) r - 2.2 and (b) r-I
4.9 in RNC (dots), DFM (solid line), and DR (dashed line) approximations.
The distance r is in units of the Bohr radius, a0.
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Fig. 6. Electron density distribution around a fully stripped argon ion in

a pure argon plasma, T - 1000 eV, N - 5 x 102Z cm 3 . Solid curve - ne

from eq. (22); dashed curve - ne from (15) and (17).
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4 Fig. 7. The distribution of ions about a given ion according to eq.(19)

for pure argon plasma, T - 1000 eV, Ne - 5 x 1024 cm- 3 . Solid curve -

-. average atom model; dashed curve - hypernetted chain approximation with

- 16.08. Arrow indicates the ion sphere radius.
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Fig. 8. Comparison of potentials V(r) defined by (1.0) for pure argon

plasma, T - 1000 eV, Ne = 5 x 1024 cm- 3 .  Solid curve -fully stripped

argon; dashed curve - average atom model; dotted curve - linearized Debye-

NS

Huckel potential with Z - 18, Z=16.08. Potential curves for hydrogen-

like argon lie between the solid and dashed curves.
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Fig. 9. Electron collision strengths for the 2p-ls transition in hydrogen-

like argon. Pure argon plasma, T - 1000 eV. Solid curve - Ne = 2 x 1025

cm dashed curve - Ne 5 x 1024 cm 3 . E = energy of incident electrons.

37

'> "4 ., '. . ."O . : "."~ ~ .2.2 ""' .2 "". . ..,2.2. .2. .-' ° . ""' . . - -""". ". . ". '- -. . . ". " .

#4 , ,-,",'-'I Y " 'P,,','Y,' v, "Lf,-,,' w . '/,'QA
,
' '.,:.",' ',. . ,."•.. .".'." '- '- .' .. ,-."."



References

1. R.D. Cowan and J. Ashkin, Phys. Rev. 105, 144 (1957).

2. Balazs R. Rozsnyai, Phys. Rev. A5, 1137 (1972).

3. J.C. Weisheit, PPPL-1765 (1981), to appear in Applied Atomic Collision

Physics, Vol. II, Ed. H. S. Massey.

4. S. Skupsky, Phys. Rev. A21, 1316 (1980).

5. J. Davis and M. Blaha, Physics of Electronic and Atomic Collisions,

Ed. S. Datz (North-Holland, New York, 1982).

6. U. Gupta and A.K. Rajagopal, Phys. Rep. 87, No. 6 p. 259 (1982).

7. U. Gupta, M. Blaha, and J. Davis (to be published in J. Phys. B.).

."-. 8. J.P. Hansen, Phys. Rev. A8, 3096 (1973).

"' 9. M. Baus and J-P. Hansen, Phys. Rep. 59, 1 (1980); S. Ichimaru, Rev.

Mod. Phys. 54, 1017 (1982).

10. C. Deutsch, Phys. Lett. 60A, 317 (1977).

11. J.P. Hansen and I.R. McDonald, Phys. Rev. A 23, 2041 (1981).

12. J.F. Springer, M.A. Pokrant, and F.A. Stevens, Jr., J. Chem. Phys. 58,

4863 (1973).

13. F. Rogers, UCRL-89123 (1983), to appear in Phys. Rev. A.

14. R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957).

15. R. M. More, UCRL-88511 (1982), to appear in Atomic and Molecular

Proceses in Controlled Fusion, proceedings.

16. S.G. Brush, H.L. Sahlin, and E. Teller, Phys. Rev. 45, 2102 (1966).

17. M.W.C. Dharma-wardana, J. Quant. Spect. Red. Transf. 27, 315 (1982).

18. See, e.g., Fig. 1 of Ref. 5 for comparison.

19. M.- W. C. Dharma-wardana and R. Taylor, J. Phys. C.: Solid St. Phys.

14, 629 (1981).

20. R. D. Cowan, The Theory of Atomic Structure and Spectra, Univ. of

California Press, 1981.

21. J. Stewart and K. Pyatt, Jr., Astrophys. J. 144, 1203 (1966).

38

' ', , " -.............: " ........................... . .:.... . •......4. . ....-. • .. ..-.-. --. -.



*~~~~~. 
Ilk .

. -. .- 
*

Yt

.. ... ......

Ali

-A~

4WS. 5v*

4' ~ 
A.


